Witam wszystkich...

Tutaj przedstawione są wszystkie istotne informacje dotyczące konstrukcji i programowania TRX-a Wolf.

Programowanie STM32 i FPGA:

Jak zaprogramować transceiver:

Najpierw potrzebujesz ST-Link V2 dla STM32 i USB blastera dla FPGA (do pisania plików jic dla oprogramowania układowego FPGA) i plików BIN (dla oprogramowania układowego STM32), które możesz skompilować samodzielnie lub znaleźć w kanale Telegram.

===STM32===

Firmware STM32 można utworzyć na 3 różne sposoby:

1. Najłatwiejszym sposobem zaprogramowania STM jest użycie gniazda USB.

Podłącz płytę główną do komputera za pomocą kabla USB.

Załóż zworę Boot0 na płycie głównej,

Włącz radiotelefon i przytrzymaj przycisk zasilania.

W razie potrzeby wymagany jest sterownik, który należy następnie zainstalować. (w folderze Soft/Driver)

Otwórz program STM32CubeProg,

Wybierz wykryte urządzenie DFU i wybierz plik oprogramowania (w zależności od używanego tu wyświetlacza np. WOLF-RA8875_GT911.bin) i rozpocznij proces programowania.

- * zwolnij przycisk zasilania po zakończeniu programowania,
- * Usuń kabel USB.
- * Usuń kabel lub zworkę ze zworki Boot0.
- * wtedy TRX można włączyć i powinien uruchomić się bez żadnych problemów.
- 2. Programowanie za pomocą ST-Link.

*jeśli jeszcze tego nie zrobiłeś, zainstaluj sterownik dla ST-Link

- * podłącz ST-Link do gniazda JTAG zgodnie ze schematem połączeń
- * Podłącz ST-Link do komputera za pomocą kabla USB
- * Włącz radiotelefon przyciskiem zasilania i naciśnij i przytrzymaj przycisk zasilania.
- * Otwórz program STM32CubeProg,

* wybierz wykryte urządzenie ST-LINK i wybierz plik oprogramowania sprzętowego.

Dla wyświetlacza używanego tutaj do programowania służy ten plik: WOLF-RA8875_GT911.bin dla wyświetlacza 7-calowego z GT911 i rozpocznij proces programowania.

* Odłącz zasilanie TRX po zakończeniu programowania

* wyjmij konektory z gniazda JTAG.

Ze względu na kompletność trzecia metoda:

z programatorem ST-LINK bezpośrednio ze środowiska programistycznego Keil,

w tym celu po skompilowaniu oprogramowania naciśnij klawisz F8 i poczekaj na zakończenie procesu.

Plik BIN, który ma być użyty do programowania, zależy od używanego wyświetlacza.

=== FPGA ===

Flashowanie odbywa się za pomocą USB blastera i oprogramowania Quartus.

W przypadku układów chińskich zaleca się używanie starszej wersji oprogramowania i sterowników Quartus 13.

Po uruchomieniu i podłączeniu do transceivera wybierz plik JIC, tutaj Wolf.jic, zaznacz wszystkie możliwe checkboxy i rozpocznij proces.

UWAGA !!!

Przed programowaniem transiwera/FPGA, programator musi być wyłączony, a transceiver całkowicie pozbawiony napięcia.!!!

Następnie podłącz wtyczkę do programowania do odpowiedniego gniazda JTAG, włącz TRX i podłącz USB_Blaster do PC za pomocą podświetlonego kabla USB

Po całkowitym zaprogramowaniu STM, FPGA i ewentualnie ES01 (moduł WLAN) kilka małych kroków jest niezbędnych do uruchomienia wilka.

Sprawdzanie rozdzielczości ADC

- * W menu kalibracji wyzeruj S-metr,
- * Wyłącz ADC Dither w menu ADC Settings, włącz tryb LSB,
- * Pasmo 2500 Hz, dodaj zaślepkę do złącza SMA na wejściu sterownika ADC.
- * Przy wyłączonych PRE, PGA i DRV poziom szumów powinien wynosić około -110 dB,
- * jeśli jest wyższy sprawdź parowanie układów FPGA i ADC

Sprawdź funkcjonalność sterownika ADC

* Wyzeruj S-meter w menu Kalibracja,

* Wyłącz Dithering ADC w menu "Ustawienia ADC",

* Włącz tryb LSB i przepustowość 2500 Hz oraz krótkie złącze SMA do wejścia sterownika ADC.

* Przy włączonych PGA i DRV poziom szumów powinien wynosić od -140db do -130db.

* Jeśli jest wyższy, sprawdź sterownik ADC, jego etykietę i wiązkę przewodów. *

Sprawdzanie symetrii gałęzi ADC

* Przejdź do informacji o systemie w menu.

* Pokazuje minimalne i maksymalne wartości ostatnio otrzymane z ADC.

* Silne przekrzywienie (np. -10 do 30000) wskazuje na awarię sterownika, ADC lub FPGA.

* Jeśli występuje skos, ale nie silny, oznacza to zły efekt symetryczny transformatora T4 przed sterownikiem ADC.

* Nie ma w tym nic złego, ale przy silnych sygnałach można stracić dynamikę – jeden kanał przeciąży się szybciej niż drugi.

* Możesz zobaczyć sygnały duchów w widmie.

* Włącz Dithering ADC.

* Zwiększa to nieco szum odbioru, ale uwalnia ADC od sygnałów zakłócających.

=== Programowanie ESP-01 ===

Jak zaprogramować ESP-01, aby był użyteczny dla wilka.

- ESP8622 dla ESP-01 np. B. ten. ESP8266 z przełącznikiem

- moduł ESP-01

- Oprogramowanie do programowania ESP_flash_download_tools_v3.4.4.zip - firmware ESP-01.ZIP.

- i ewentualnie program terminalowy Termite lub monitor szeregowy z Arduino.

Najpierw ładujemy najnowsze pliki bin ze strony developera

https://www.espressif.com/en/support/download/sdks-demos

Do pobrania wybieramy "ESP8266 NONOS SDK",

Found 3 results	Expand all * Platform Version	🛃 Download selected
 Title 	Platform Version	
		Release Date ~ Download
 + ESP-IDF (ESP32, ESP32-S, ESP32-C) 	RTOS SDK V4.3.1	2021.09.09
ESP8266 RTOS SDK	RTOS SDK Latest	2021.04.08
ESP8266 NONOS SDK	NON-OS SDK Latest	2020.06.03
		🛃 Download selected
Found 3 results	Expand all *	Journioud selected
O Dite	Platform Version	Release Date - Download
 ESP-IDF (ESP32, ESP32-S, ESP32-C) 	REOS SDK V4.3.1	2021.09.09 🕹
· ESPERIE RTOS SDK	RTOS SDK Latest	2021.04.08

klikamy na pole, a następnie na plik "Source.code (zip)

espressif / ESP826	6_NONOS_SDK Public		다 Notifications	샵 Star	778	¥ Fork	480
↔ Code ⊙ Issues 17	1 12 Pull requests 12	ⓒ Actions Projects ♀ Wiki ⓒ Security 🗠 Insights					
	Releases Tags		Q Find a release				
	18 Oct 2021	V3.0.5 (Interf Feature • Updated SDK version to 3.0.5 • Updated AT version to 1.7.5 Bugfix					
		Fixed that AT+CWJAP, AT+CWJAP_CUR, AT+CWJAP_DEF command returned wrong reason code					
		Assets 2 Anklicken und downloaden					

Po zakończeniu pobierania rozpakuj plik zip do folderu narzędzi ESP. Gdy to wszystko zostanie zrobione, można uruchomić narzędzie do pobierania flash. Tutaj opisuję procedurę dla wersji 3.4.4 (u mnie zadziałało i wszystkie moduły EPS dawały się sflashować LOL) Pojawia się ekran startowy z dużym czarnym oknem terminala i mniejszym oknem z 3 przyciskami wyboru

kliknij przycisk z ESP8266.....i pojawi się okno wyboru.

Tutaj można wybrać wymagane pliki do programowania.

Po wybraniu plików i przypisaniu prawidłowych adresów zaznacz pole na początku wiersza, aby wiersz zmienił kolor na zielony.

Po wykonaniu tej czynności można dokonać niezbędnych ustawień.

Te ustawienia dotyczą modułu ESP-01.

Zaakceptuj to ustawienie.

Teraz wystarczy wybrać interfejs COM (w moim przypadku był to COM10 i ustawić prędkość transmisji na 115200).

Adapter programujący z modułem ESP musi być podłączony.:!:

Teraz moduł można zaprogramować.

Oto mały filmik z programowania ESP-01/S:

https://www.amateurfunk-sulingen.de/wiki/lib/exe/fetch.php?media=user:debut_2021-12-27_19_56_13.mp4

=== Znane dotychczas błędy: ===

Przyciski nie działają poprawnie:

* Sprawdź daisy chain SPI, szczególnie pod kątem zwarć (lutowanie złącz FPC jest narażone na wystąpienie zwarć niewidocznych dla oka),

* oraz dodatnie napięcie 3,3V na wszystkich kanałach ADC na panelu przednim.

* Sprawdź, czy wszystkie rezystory podciągające są obecne, szczególnie w obszarze karty SD (nawet jeśli nie chcesz używać karty).

Transceiver nie zapisuje kalibracji, zawiesza się po wyjściu z menu kalibracji

* Masz wolną pamięć EEPROM, musisz wymienić chip lub

* zmniejsz prędkość kanału SPI2 ustawiając dzielnik preskalera na 8, 16 lub więcej. (plik ustawienia.h)

Reset ustawień transceivera

* Wersja 7" jest resetowana do ustawień fabrycznych poprzez naciśnięcie przycisku F1 podczas włączania urządzenia.

* Kombinacja F1+F8 służy do resetowania kalibracji.

* Wersję 3" przywraca się do ustawień fabrycznych po naciśnięciu przycisku MENU podczas włączania zasilania.

* Kombinacja MENU+PRE służy do resetowania kalibracji.

Będzie kontynuowane i rozszerzane... w miarę napływania uwag.