May 2015 eRadCom

Barry Chambers, GBAGN «b.chambers@sheffield.ac.uk

Technical Feature

A soundcard-less SDR panadapter
based on the Arduino

Live spectrum and waterfall display withouta PC

INTRODUCTION. Over the years, | have
experimented with several types of software
defined radio receivers including the
SoftRock series and the Finningley SDR.
These provide | and Q output signals that
are usually processed and displayed using
a PC and its associated soundcard, the
software to do this being freely available

on the web [1]. Having recently purchased
a KX3, | sought an inexpensive route to
acquiring an accompanying standalone
panadapter and so first looked at the design
by AABE, which is based on the Raspberry
Pi or Beaglebone boards [2]. This design
again follows the traditional route of using
a soundcard, with the Pi or Beaglebone
dealing mainly with information display.
Although | have been developing computer
software for 50 years (I wrote my first code
in 1964, using Ferranti Mercury Autocode),
| found the Pi route frustrating, to say the
least! Having worked my way through an
eleven page guide to setting up the AAGE
software, | found that it didn't run because
the Pi's OS has been changed and there
was now a missing dependency between
the various software libraries. A search

of the Pi's Forum pages did not reveal a
solution to this problem so | decided instead
to see what | could do with an Arduino-
based system that was entirely software-
based, ie it did not require a soundcard.

It is worth pointing out that the resulting
hardware will only display signals; unlike
some PC and soundcard-based systems, it
will not demodulate them, primarily because
of processor and memory limitations.
Nevertheless, it can still provide useful
information to an operator in terms of band
occupancy and may also be capable of use
as a data logger for propagation monitoring.

HARDWARE. The success
of a project such as this
depends crucially on the
choice of computer board
and display module.

Superficially, the
Raspberry Pi might seem to
win hands down over the
Arduino because of its much
faster processor; however,
Pi software is normally
written in an interpretive
language, Python, whereas
the Arduino uses a compiled
version of C++. When
referring to the Arduino,
most people normally think
of the ubiquitous Uno
board but its performance
is inadequate for this
project, not only in terms of
processor speed (16MHz)
and working memory (2kB
SRAM) but also in terms of available |10
pins (14). Instead, | used an Arduino Due
board, which has an Atmel SAM3X8E ARM
Cortex-M3 32 bit processor running at
84MHz, together with 96kb of SRAM and
a total of 54 10 pins. A Due board can also
do 12 bit ADC sampling, yet is available on
eBay for less than £20.

The 5 inch TFT colour display module
used in the panadapter has 800x480 RGB
pixels, a touch screen and even a SD card
port. Nevertheless, it too is available via
eBay for less than £20. The module has a
standard 40 pin header that is also used
on several smaller and cheaper displays
advertised on eBay but these typically
have only 320x240 pixels. Initial software
development was done using one of the

20kHz LPF
linput 5 —l
Ll akeror | ADCo
TFT
Due board display
20kHz LPF ADC1

)

oi

4kHz LPF J

FIGURE 1: Block diagram of Arduino based panadapter.

PHOTO 1: Breadboard prototype of Arduino based panadapter.

smaller displays but because of the common
pinout of the header, it was a simple matter
to upgrade the display when the feasibility
of the project was confirmed.

A block diagram of the panadapter is
shown in Figure 1. As well as the Due
board and TFT display, the only other
hardware needed comprises single stage
high gain audio amplifiers for each of the
| and Q channels and their associated
software-switchable active low pass filters.
The latter are needed to reduce aliasing
errors in the sampled | and Q data.

Figure 2 shows the circuit of the | and
Q input amplifiers, each of which provides
a nominal gain of about 50. Figure 3
shows the generic circuit of one of the 8
pole active low pass filters. In total, four
of these are needed: two for the | data
channel and two for the Q data channel.
The wideband filters have a nominal cut-off
frequency of about 20kHz, the narrowband
ones about 4kHz. The cut-off frequencies
are set by changing the values of several
capacitors and resistors [3] and the
appropriate values for each filter are listed
in Table 1. The signal paths through the
appropriate filters are switched by software
controlled relays using the circuit shown in
Figure 4. If required, the individual | and
Q channel gains can be set by multi-tum
potentiometers connected between the
outputs of the active low pass filters and

23

24

Technical Feature

Hin-158. 98 Hax~-1180.0

PHOTO 2: The panadapter displaying signals from the KX3 receiver
tuned to 10.140715MHz (bandwidth set at +5kHz).

the I and Q ADC inputs on the Due board.
The connections between the latter and
the TFT display are shown in Table 2.

The display backlight is powered via the
LED A connection, pin 19, on the 40 pin
header. Preferably this should be connected
to a separate 3.3V supply, but in practice
the on-board Due 3.3V regulator seems
able to cope with the required current
demand. As supplied, the TFT display has
two options for controlling the backlight
brightness and these can be selected by
bridging appropriate pairs of pads on the
display board. However, | have only tried
the option in which the backlight is fully on
all the time.

SOFTWARE. Arduino programming is
facilitated by the fact that there are many
tutorials and code examples that can be
downloaded from the web, together with
code libraries to do or interface with almost
anything. In the interest of brevity, | will
discuss in detail only a few of the more
important parts of the panadapter code, but
the full listing contains many comments

to enable a fuller understanding for those
readers wishing to make modifications. The
full code listing is available from me

May 2015 eRadCom

Barry Chambers, GBAGN «b.chambers@sheffield.ac.uk

Since the | and Q
data samples are each
represented by a 12 bit
word (specifying one of
4096 voltage levels), these
are then converted into
two numbers each lying
within the range +1; thus
the polarity of the original
sampled AC waveforms is
preserved.

Although this code
fragment looks simple,
two further factors need to
be considered and these
are to do with the rate at
which the incoming | and
Q data is sampled, since according to the
Nyquist criterion, a signal with a bandwidth
of B Hz needs to be sampled at a rate of at
least 2B samples/sec. Thus the maximum
signal bandwidth that can be displayed by
the panadapter will depend on how fast the
Due's ADC can acquire samples. There is
also another requirement for fast sampling
and this is to do with the fact that the | and
Q data are not sampled simultaneously
but rather sequentially since only a single
ADC is used, together with a multiplexer.
The resulting time delay between sampling
first the | channel and then the Q channel
will give rise to a phase error for the Q
channel sample and this, together with
any unbalance in the amplitude of the |
and Q channel samples will give rise to an
unwanted mirror image on the spectrum
display. The code fragment in Listing 1
tries to minimise the phase error by first
sampling the | and Q channels and then
doing any processing that is required before
saving the data in the array /IQdatal].

The second way in which the phase error
can be reduced is by fine tuning certain
constants that control the way the ADC
operates. By default, a single analogRead()

command takes about 39us to implement
but by manipulating the Cortex-M3 ADC
MR (Mode Register) constants in software,
this time can be reduced to about 4us. The
code to do this is shown in Listing 2.

Further details on this technique can
be found in the Atmel SAM3X8E ARM
Cortex-M3 CPU datasheet [4].

The time taken to acquire the desired
number of samples of | data and Q data
is noted and from this an estimate of the
equivalent sampling frequency can be
calculated. This is then trimmed to the
required figure using additional delay
inserted into the sampling loop using the
command delayMicroseconds (Delay). The
integer number Delay associated with this
command must be determined empirically
but, as a guide, a value of 65 in my code
gave an effective sampling frequency of
13kHz (equivalent to a displayed spectrum
of +5kHz) and a value of 4 gave a
sampling frequency of 62kHz (equivalent to
a displayed spectrum of +24kHz). It will be
noted that the displayed spectrum width is
less than might be expected from the quoted
sampling frequencies. The reason for this
will be discussed later.

Before further discussion of the software,
we first need to consider what information
will be displayed to the user. | chose to
make both a spectrum display and a
waterfall available simultaneously, but
it would be a simple matter to alter the
software to choose either one or the other.
Irrespective of this, we should aim to utilise
the TFT display pixels as effectively as
possible. Hence | chose to use the display
in landscape mode, ie the display axis
corresponding to 800 pixels was used for
the frequency axis. The TFT display can
display up to 480 pixels of information
along the other axis, so | chose to use 200
of these for the spectrum display amplitude
axis, 200 for the waterfall display time axis

and the remaining 80 for axis labels

on request via e-mail.

The first part of the code is
concemed with sampling the
incoming low frequency | and Q data
from the receiver. This data will be
in the form of two AC waveforms but
the ADC inputs on the Due board can
only deal with uni-directional signals.
The solution is thus to DC bias the
ADC input pins at their midway point
of 1.65V via a potential divider and
to feed in the | or Q signal via a DC
blocking capacitor. By default, the
Due's ADC is configured to output 10
bits of data to represent each data
sample, but this can be extended to
12 bits using the command
analogReadResolution (12);

Samples of the incoming | and Q
data are acquired using the code loop
shown in Listing 1.

: a
Qinput 3

2 »—o ToQLPF

Opl

+2.5V

FIGURE 2: | and Q channel amplifiers.

and soft keys.

A decision now has to be made
about how many | and Q samples
are to be processed each time a
frequency spectrum or waterfall line
is displayed. The | and Q samples
represent snapshots of voltage
waveforms in the time domain and
these need to be transformed into
information about the amplitudes of
the individual frequency components
making up the spectrum display. The
most efficient way of doing this is by
using the fast Fourier transform (FFT)
but this can only deal with data sets
made up of 2N pairs of numbers. N is
an integer, so for example if N=10, a
data set would consist of 1024 | data
samples and 1024 Q data samples,
thus giving rise to 1024 frequency

components. The TFT display,

26

Technical Feature

May 2015 eRadCom

Barry Chambers, GBAGN «b.chambers@sheffield.ac.uk

FIGURE 3: Generic low pass filter (see Table 1).

however, can only display 800 frequency
components at a time so we either have

to choose a value of N=9 (equivalent

to 512 frequency points) or N=10. In

the first case, not all the available pixels

on the display will be used (512 out of
800) whereas in the second case, we

can only display 800 out of the available
1024 frequency components. There are
advantages in choosing the second of these
alternatives; firstly, by using 1024 rather
than 512 points in the FFT algorithm,

the frequency resolution of the displayed
spectrum is increased, even though we
cannot display the full spectrum that a
given sampling frequency provides. Also,
the displayed | and Q data is effectively
being oversampled and this will ease the
task of the | and Q low pass filters; hence
the reason why in the earlier discussion, it
was mentioned that the displayed frequency
spectrum did not seem to match up with
the quoted sampling frequency. So for
example, if the nominal sampling frequency
were 50kHz, this would ordinarily result

in a potential spectrum display of

turned into powers by squaring and are
normalised with respect to the maximum
signal power that could be measured by the
Due's ADC. This maximum power is that
resulting from an ADC reading of +2048.
Finally, since a logarithmic amplitude
display is required, each data point is
processed accordingly.

A simplified code to carry out these
operations is shown in Listing 3.

Tuming now to the TFT display, the
software for driving this is handled by a
library called UTFT that can be downloaded
from [6]. The library can drive a large
number of different displays and contains
routines for drawing text, figures, lines,
circles etc as well as full control of colour
and font. Since the TFT display also has an
integrated touch screen, provision has been
made to incorporate a number of soft keys
to control such things as displayed spectrum
width and display amplitude range. The
handling of the soft keys is controlled by
another library called UTouch that can also
be downloaded from [6].

SOFTWARE REFINEMENTS. If the software
and hardware are used as described thus far,
two artefacts will be evident on the display.
Firstly, a large spike will always be seen at
the centre of the display and this corresponds
to a signal at DC. This arises from the fact
that the | and Q waveform voltages will most
probably have some associated DC shift
associated with them. If this is not removed
in the data processing then it will show as a
central frequency spike.

The other artefact on the display will
manifest itself as a mirror image of a wanted
spectral component, which appears in the
other half of the display. So for example,
if a real frequency component appears at
frequency +f in the right hand half of the
display, an unwanted image of this may
appear at —f in the left hand side of the
display, or vice versa. This effect is caused
by amplitude and phase errors occurring
in an | and Q data pair. The amplitude
error arises when the gains of the | and Q
signal paths are unequal; the phase errors
arise because the | and Q data channels

are not sampled simultaneously but

+25kHz (the left and right hand sides

sequentially. Both the amplitude

of the spectrum are independent since LPEN and phase errors will vary with the
we have sampled both the land Q o o frequepcy being displayed so a
data at 50kHz). In practice, the actual Ichannelamp Lo—y | y——o— lchanmnelADC | correction at one frequency will not
displayed spectrum width would then e v hold exactly at another. There are
be (800/1024) x 50kHz = 39kHz. LFw schemes that can provide correction
Having finally decided on the at all displayed frequencies but these
numper of I and Q data samples to be take up far more computing resources
it amaitay of complex mumbers. | adopted a corection sheme that
of the form real part=/Qdatal0], Qchannelamp Lo° P no Qchannel ADC | USES the received spectral component
imaginary part=/Qdata[1], real Qchanne with the largest amplitude at any given
part=IQdata[2], etc. This array is ne ne time as a test signal [71. The resulting
then processed using the FFT to LPFW amplitude and phase corrections to

find the frequency spectrum of the
sampled | and Q time waveforms. The
resulting data is an array of complex
voltage amplitudes for each frequency
point in the spectrum. Conveniently,
the Arduino IDE for the Due board
contains a set of DSP algorithms
specially written for the Due’s ARM
Cortex M3 processor, [5], and so
these are utilised wherever possible in
the panadapter code. Further details
are given in the first sidebar. The

+12V

BC182L

Arduino pin 12

FIGURE 4: Relay driver for switching low pass filters.

the displayed spectrum and waterfall
are thus only valid, in theory, at a
single frequency but in practice the
results are quite acceptable over

the full displayed frequency range.
Furthermore, the corrections are made
automatically and are dynamic, ie they
change from one data set to the next.
Because the mathematics of the error
correction process is rather involved, it
will not be discussed further here but
interested readers will find fuller details

complex voltage amplitudes are then

in the box on page 30.

May 2015 eRadCom

Barry Chambers, GBAGN e b.chambers@sheffield.ac.uk

IMPLEMENTATION. A breadboard
prototype of the complete panadapter is
shown in Photo 1. The | and Q channel
amplifiers, low pass filters and relay
switching circuits were all built on single-
sided printed circuit boards using wire-
ended components. As can be seen from
the photo, the resulting boards are rather
large and would benefit from a redesign
using SMD parts.

The panadapter needs voltage supplies
of 5V, 3.3V and 2.5V. The first two of
these can be obtained from the Arduino
board itself and the third is provided
from the 5V supply via a simple potential
divider, as shown in Figure 2.

Photo 2 shows a close up view of
the TFT screen when the panadapter
was connected to my KX3 and the
latter was being used to monitor signal
activity around 10.14MHz. In this case,
the bandwidth of the display was set at
+5kHz. From left to right, the soft keys

at the top of the display can be used

to change the amplitude range of the
displayed spectrum and waterfall displays
and the displayed bandwidth (toggled
between +12kHz and +5kHz). The
current value of the former is displayed to
the left of the soft keys.

CONCLUSIONS. When | started this
project, | totally underestimated the time
and effort it would consume but the end
result has made it worthwhile. Although
not yet boxed-up, the panadapter is
already proving to be a useful addition
to my KX3. Possible modifications might
include increasing or decreasing the
displayed frequency bandwidth, adding
more soft keys for increased functionality
or utilisation of the SD card slot on the
TFT display. The latter would then enable
the panadapter to be used as a beacon
monitor and data logger for propagation
studies.

TABLE 1: Component values for low-pass filters (all other values are common to

both filter types)

Component

R2, R3, R7, R8, R12,R13,R17, R18
C2, C3,C5, C6, C8, C9, C11, C12

Narrow band 4kHz Wide band 20kHz
8k2 8k2
4n7 1n0

TABLE 2: Connections between the Arduino Due board and the TFT display.

TFT pin TFT function Arduino Due pin
1 oV

2 VCC 3.3V

3

4 RS D38
5 WR D39
6 RD Connect to 3.3V

7 DB8 D22
8 DB9 D23
9 DB10 D24
10 DB11 D25
11 DB12 D26
12 DB13 D27
13 DB14 D28
14 DB15 D29
15 CS D40
16

17 RST D41
18

19 LED A Connect to 3.3V. Link ‘always on’ pads on back side of TFT module
20

21 DBO D37
22 DB1 D36
23 DB2 D35
24 DB3 D34
25 DB4 D33
26 DB5 D32
27 DB6 D31
28 DB7 D30
29 T CLK D6
30 TCS D5
Sl T DIN D4
32

33 T DOUT D3
34 T IRQ D2

Technical Feature

WEBSEARCH

[1] Rocky SDR software www.dxatlas.com/rocky/

[2] A Tiny Python Panadapter, Martin Ewing, AAGE,
QST April 2014

[3] Active Low Pass Filter Design, Texas Instruments
www.ti.conVIit/'SLOA049

[4]). Atmel SAM3X8E ARM Cortex M3 CPU data sheet
www.atmel.convimages/doc11057.pdf

[5] CMSIS DSP library for ARM Cortex M3 processor
www.keil.conypack/doc/CMSIS/DSP/html/index.html
[6] UTFT and UTouch libraries
http://henningkarlsen.com/electronics/library.php?id=52
[711Q correction Churchill F E, Ogar G W and
Thompson B J, The correction of | and Q errors in

a coherent processor, IEEE Trans Aerospace and
Electronic Systems, AES 17, No 1, Jan 1981,

pp 131 137

[8] Enabling the Arduino Cortex M3 DSP functions
http://forum.arduino.c¢/index.php?PHPSESSID=t46sbol
t2km849unr8jgfmjdcl &topic=140107.0

Enabling the Cortex M3 DSP functions
The following information has been taken
from [8].
1. Find the text file platform.txt at
C:/Program Files (x86)/Arduino/hardware/
arduino/sam/platform.txt
2. Using Notepad, amend the file section
called
Combine gc sections, archives, and
objects
so it now includes a reference to a file called
libarm_cortexM3I/_math.a
Combine gc sections, archives, and
objects
recipe.c.combine.pattern="{compiler.
path}{compiler.c.elf.cmd}” {compiler.c.elf.
flags} mcpu={build.mcu} “ T{build.
variant.path}/{build.ldscript}” “ WI,
Map, {build.path}/{build.project_name}.
map” o “{build.path}/{build.project_
name}.elf” “ L{build.path}” Im Igcc
mthumb WI, cref WI, check sections
WI, gc sections WI, entry=Reset_Han
dler WI, unresolved symbols=report all
WI, warn common WI, warn section
align WI, warn unresolved symbols
WI, start group “{build.path}/syscalls_
sam3.c.0” {object_files} “{build.variant.
path}/{build.variant_system_lib}" “{build.
variant.path}/libarm_cortexM3/_math.a”
“{build.path}/{archive_file}" WI, end
group
3. Navigate to the IDE folder
C:/Program Files (x86)/Arduino/hardware/
arduino/sam/system/CMSIS/CMSIS/Lib/
GCC/
In that folder, you should find a file called
libarm_cortexM3/_math.a
Make a copy of this file and place it in the
IDE folder
C:/Program Files (x86)/Arduino/hardware/
arduino/samj/variants/arduino_due_x/
The Cortex M3 DSP functions should now
be accessible.

27

May 2015 eRadCom

Technical Feature

Barry Chambers, GBAGN «b.chambers@sheffield.ac.uk

30

Correction of | and Q errors

This discussion is an abridged version of that found in [7].

A simplified and error free version of the | and Q data being passed
into the panadapter can be written as

I(t) = A cos wt and Q(t) = A sin wt

This pair of signals can be thought of as a complex signal

1(t) +jQ(t) = A el®t

In practice the received | and Q data will contain errors such that

L(t)=(+4+¢e)Acoswt +aand Q,(t) =Asin(wt+¢) +b

where

€ is the fractional amplitude imbalance

@ is the phase imbalance

a is the DC offset in the | channel, and

b is the DC offset in the Q channel.

a and b can be corrected by subtracting the average level from the signal
in each channel.

Then we have
L,(t) = (1 +€)Acoswt and Q,(t) = Asin(wt + @)
The |, and Q, signals are treated as vectors and two correction coefficients

P and E, are required, P for rotating one vector and E, for scaling the
other. Then the corrected signals |, and Q, are related to |, and Q, by

I3=E112andQ3=P12+ Qz

It can be shown that the required form for E, and P is

_ cosg
17 (1+e)

-sing

and P = Gte)

After application of the correction process, the final signals are

I;(t) = Acosgcoswt and Q5(t) = A cose sinwt

An amplitude scaling factor cos @ has been introduced but since it is
common to both |, and Q, this is not of importance.

The procedure to obtain the correction coefficients is as follows:

The | and Q signals are each sampled 1024 times and the data is
stored in array /IQdatal[]. The 2048 data values are also stored in
array IQdata2[] for future use. The data in /IQdatal[] is next FFTed as
outlined in the previous discussion of the panadapter software. Now
the /IQdatal[] array contains 1024 complex frequency values arranged
in pairs (real part, imaginary part, real part, imaginary part...) in array

The DC offsets in the original | and Q sampled time waveforms are
obtained from

= IQdata1[0] and b = IQdatal[1]
1024 1024

and these values will later be subtracted from all the data contained in
array IQdata2[].

To obtain the correction coefficients E, and P, we need to locate the
complex frequency component in array /Qdatal[] which has the largest
magnitude and to note its location within the array as a pair of indices,
eg IQdatal[2*i] real part of frequency, IQdatal [2*i+1] imaginary
part of frequency. This frequency component can be thought of as our
test signal and let us assume that the values of its real and imaginary
parts are

1Qdatal[2 +i] = W and IQdatal[2 «i + 1] = X

Then the unwanted image of this test signal will be located within the
array IQdatal[] at

1Qdatal[2048 2*i] real part of image frequency and
1Qdatal[2048 2*i+1] imaginary part of image frequency.

The associated data values are

1Qdatal[2048 — 2+ i] =Y and IQdatal[2048 —2 i+ 1] =Z

It can be shown that the correction coefficients E, and P are related to W,
X, Y and Z by

denom = 2./(W+Y)*(W+Y)+(X 2)*(X 2));

el = 1. (YX(W+Y) Z*(X Z))*denom;

p = (Z*W+Y)+Y*(X Z))*denom;

Finally, we can apply these correction factors to the copy of the original
sampled | and Q data which was previously stored in array IQdata2[].

/1 1Q correction to copy of original sampled | and Q data
for (uint16_ti = 0; i < fftSize; i++)
{

// remove DC shift

|Qdata2[2*i]=IQdata2[2*i] a;

1Qdata2[2*i +1]=IQdata2[2*i +1] b;

// scale and rotate | and Q vectors
IQdata2[2*i +1]=p*IQdata2[2*i] +IQdata2[2*i +1];
1Qdata2[2*i]=el*IQdata2[2*i];

}

This data is now FFTed to obtain the corrected frequency spectrum which

locations [0] to [20471].

will subsequently be displayed.

Listing 1: Simple code loop to sample | and
Q data.

Const uint32_t fftSize = 1024;

const float weight = 1. / 2047.;
for(uint16_t i=0;i<fftSize; i++) {

rawl = analogRead (0);

rawQ = analogRead (1);

IQdata[2*i] = float(rawl 2047) * weight;
IQdata[2*i+ 1] = float(rawQ 2047) *weight;
}

Listing 2: Reducing the ADC read time.

// modify ADC_MR register to make ADC read
faster

// change STARTUP from 8 to 2 (512 to 16
periods of ADC clock)

REG_ADC_MR = (REG_ADC_MR &
OxFFFOFFFF) | 0x00020000;

// change PRESCAL from 2 to 1
REG_ADC MR = (REG_ADC_MR &
OxFFFFFOFF) | 0x00000100;

Listing 3: Converting the sampled | and Q

data to a frequency spectrum.

const uint32_t fftSize = 1024;

const uint32_t ifftFlag = 0;

const uint32_t doBitReverse = 1;

// Initialize the CFFT/CIFFT module

arm_cfft_radix4_init_f32(&S, fftSize, ifftFlag,
doBitReverse);

/* Process the complex IQ data in array
IQdatal] through the CFFT/CIFFT module

to implement FFT */

arm _cfft_radix4_f32(&S, IQdata);

/* Process the data through the Complex
Magnitude Module for

calculating the magnitude at each bin.

Return data in array Spectrum(l; This
contains 1024 points */

arm_cmplx_mag_f32(IQdata, Spectrum,
fftSize);

/* Normalise the frequency data and convert
to log form */

for (uint16_t i=0; i <fftSize; i++){

Spectruml[i]=20.0*log10(Spectrum/[i])
maxSignal;

}

